41 research outputs found

    Increased Expression of Circular RNA circ_0005230 Indicates Dismal Prognosis in Breast Cancer and Regulates Cell Proliferation and Invasion via miR-618/ CBX8 Signal Pathway

    Get PDF
    Background/Aims: Circular RNAs (circRNAs) are a class of non-coding RNAs. They have been proved to be critically involved in tumorigenesis and progression of malignancies through competing endogenous RNA (ceRNA) mechanism. Nevertheless, the exploration between circRNAs and pathogenesis of breast cancer (BC) is limited. Previously, circ_0005230 was identified upregulated in BC tissues screened by circRNA microarray. In the present study, we aimed to investigate the expression pattern, functional role, and mechanism of circ_0005230 in BC. Methods: qRT-PCR was conducted to elucidate the expression levels of circ_0005230 in BC tissues and cells. Additionally, the clinical severity and prognostic value were investigated. CCK-8, colony-forming, flow cytometric assays were performed. Animal study was conducted to validate the in vitro data. What’s more, Transwell assays were induced to detect the cell metastatic properties of circ_0005230 exerts in BC cells. Luciferase reporter assay was used to measure the mechanism of circ_0005230. Results: circ_0005230 was overexpressed in BC tissue specimens and cell lines. The overexpression of circ_0005230 was related to adverse phenotypes in the patients with BC. In addition, circ_0005230 could be regarded as a prognostic predictor in BC patients. In vitro and in vivo data demonstrated the cell growth promoting role of circ_0005230. Moreover, circ_0005230 could also promote cell migratory and invasive capacities. For the mechanism investigation, circ_0005230 was proved to be a sponge of miR-618, and expression of miR-618 could regulate CBX8 expression via targeting the 3’UTR of CBX8. Rescue assays also illustrated an oncogenic function of circ_0005230 in BC via acting as a miR-618 sponge to promote CBX8 expression. Conclusion: circ_0005230/miR-618/CBX8 axis might play a key role in BC tumorigenesis and development

    Liver fibrosis and MAFLD: the exploration of multi-drug combination therapy strategies

    Get PDF
    In recent years, the prevalence of metabolic-associated fatty liver disease (MAFLD) has reached pandemic proportions as a leading cause of liver fibrosis worldwide. However, the stage of liver fibrosis is associated with an increased risk of severe liver-related and cardiovascular events and is the strongest predictor of mortality in MAFLD patients. More and more people believe that MAFLD is a multifactorial disease with multiple pathways are involved in promoting the progression of liver fibrosis. Numerous drug targets and drugs have been explored for various anti-fibrosis pathways. The treatment of single medicines is brutal to obtain satisfactory results, so the strategies of multi-drug combination therapies have attracted increasing attention. In this review, we discuss the mechanism of MAFLD-related liver fibrosis and its regression, summarize the current intervention and treatment methods for this disease, and focus on the analysis of drug combination strategies for MAFLD and its subsequent liver fibrosis in recent years to explore safer and more effective multi-drug combination therapy strategies

    Characterization of tumor microenvironment and programmed death-related genes to identify molecular subtypes and drug resistance in pancreatic cancer

    Get PDF
    Background: Immunotherapy has been a key option for the treatment of many types of cancer. A positive response to immunotherapy is heavily dependent on tumor microenvironment (TME) interaction. However, in pancreatic adenocarcinoma (PAAD), the association between TME mode of action and immune cell infiltration and immunotherapy, clinical outcome remained unknown.Methods: We systematically evaluated 29 TME genes in PAAD signature. Molecular subtypes of distinct TME signatures in PAAD were characterized by consensus clustering. After this, we comprehensively analyzed their clinical features, prognosis, and immunotherapy/chemotherapy response using correlation analysis, Kaplan-Meier curves analysis, ssGSEA analysis. 12 programmed cell death (PCD) patterns were acquired from previous study. Differentially expressed genes (DEGs) were acquired based on differential analysis. Key genes affecting overall survival (OS) of PAAD were screened by COX regression analysis and used to develop a RiskScore evaluation model. Finally, we assessed the value of RiskScore in predicting prognosis and treatment response in PAAD.Results: We identified 3 patterns of TME-associated molecular subtypes (C1, C2, C3), and observed that clinicopathological characteristics, prognosis, pathway features and immune features, immunotherapy/chemosensitivity of patients were correlated with the TME related subtypes. C1 subtype was more sensitive to the four chemotherapeutic drugs. PCD patterns were more likely to occur at C2 or C3. At the same time, we also detected 6 key genes that could affect the prognosis of PAAD, and 5 genes expressions were closely associated to methylation level. Low-risk patients with high immunocompetence had favorable prognostic results and high immunotherapy benefit. Patients in the high-risk group were more sensitive to chemotherapeutic drugs. RiskScore related to TME was an independent prognostic factor for PAAD.Conclusion: Collectively, we identified a prognostic signature of TME in PAAD patients, which could help elucidate the specific mechanism of action of TME in tumors and help to explore more effective immunotherapy strategies

    Clinical Significance of Preoperative Serum CEA, CA125, and CA19-9 Levels in Predicting the Resectability of Cholangiocarcinoma

    No full text
    To explore the clinical significance of preoperative serum CEA, CA125, and CA19-9 levels in predicting the resectability of cholangiocarcinoma. Patients with cholangiocarcinoma diagnosed by radiologic examination and admitted to the Second Affiliated Hospital of Harbin Medical University from September 1, 2011, to November 30, 2017, were retrospectively included. The relationship between the preoperative serum CEA, CA125, and CA19-9 levels and the resectability of cholangiocarcinoma was analyzed by receiver operating characteristic (ROC) curve, as well as the best cut-off point. A total of 112 met the inclusion criteria. In 50 patients with radical surgeries, the levels of preoperative serums CEA, CA125, and CA19-9 were 5.0 ± 13.9 ng/mL, 15.3 ± 11.8 U/mL, and 257.5 ± 325.6 U/mL, respectively, which were lower than those in patients with unresectable tumor. Based on the ROC curve, the ideal CA19-9 cut-off value was determined to be 1064.1 U/mL in prediction of resectability, with a sensitivity of 53.2%, a specificity of 94.0%, and the area under the ROC curve of 0.73 (P<0.05). The cut-off value of CA125 was 17.8 U/mL with a sensitivity of 72.6%, a specificity of 78.0%, and the area under the ROC curve of 0.81 (P<0.05). The cut-off value of CEA was 2.6 ng/mL with a sensitivity of 79.0%, a specificity of 48.0%, and the area under the ROC curve of 0.66 (P<0.05). In addition to this, we found that using the combination of three tumor markers could improve the value in predicting resectability of cholangiocarcinoma. In summary, this study suggested that the preoperative serum CEA, CA125, and CA19-9 levels can help predict the resectability of cholangiocarcinoma

    Mannose-binding lectin gene polymorphism and the susceptibility of sepsis: A meta-analysis

    No full text
    Objective To assess the association between the Mannose-binding lectin (MBL) gene polymorphism and the susceptibility to sepsis using a meta-analysis. Methods The publications were searched on PubMed, Embase, and Web of Science databases up to December 1, 2019 for relevant literature. Results A total of 32 studies (21 adult and 11 pediatric studies) were selected for analysis. Overall, in the three models of MBL +54 A/B gene polymorphisms, namely the dominant model BB + AB vs. AA ( p = 0.03), the recessive model BB vs. AB + AA ( p < 0.00001), and the allele model B vs. A ( p = 0.04), MBL +54 A/B was significantly related to the risk of sepsis. In the adult group, the MBL A/O gene polymorphism was associated with the risk of sepsis in the dominant model AO + OO vs. AA ( p = 0.006) as well as in the allele model O vs. A ( p = 0.04). The MBL +54 A/B gene polymorphism was significantly related to the risk of sepsis in the recessive model and, therefore, may increase the risk of sepsis. In the pediatric group, no polymorphic loci were significantly associated with sepsis in any of the three models. The results of the publication bias test demonstrated no publication bias in an unadjusted estimate of the relationship between MBL A/O and −211Y/X gene polymorphism and sepsis. Conclusions The polymorphisms of MBL that are related to the occurrence of sepsis are primarily A/O and +54 A/B, while −221Y/X and −550H/L have no clear relationship with the susceptibility of sepsis in various age groups or different models

    Extracellular Vesicles Act as Carriers for Cargo Delivery and Regulate Wnt Signaling in the Hepatocellular Carcinoma Tumor Microenvironment

    No full text
    As the primary type of liver cancer, hepatocellular carcinoma (HCC) causes a large number of deaths every year. Despite extensive research conducted on this disease, the prognosis of HCC remains unclear. Recently, research has largely focused on extracellular vesicles (EVs), and they have been found to participate in various ways in the development of various diseases, including HCC, such as by regulating cell signaling pathways. However, recent studies have reported the mechanisms underlying the regulation of Wnt signaling by EVs in HCC, primarily focusing on the regulation of the canonical pathways. This review summarizes the current literature on the regulation of Wnt signaling by EVs in HCC and their underlying mechanisms. In addition, we also present future research directions in this field. This will deepen the understanding of HCC and provide new ideas for its treatment

    Identification of afatinib-associated ADH1B and potential small-molecule drugs targeting ADH1B for hepatocellular carcinoma

    Get PDF
    Background: Afatinib is an irreversible epidermal growth factor receptor tyrosine kinase inhibitor, and it plays a role in hepatocellular carcinoma (LIHC). This study aimed to screen a key gene associated with afatinib and identify its potential candidate drugs.Methods: We screened afatinib-associated differential expressed genes based on transcriptomic data of LIHC patients from The Cancer Genome Atlas, Gene Expression Omnibus, and the Hepatocellular Carcinoma Database (HCCDB). By using the Genomics of Drug Sensitivity in Cancer 2 database, we determined candidate genes using analysis of the correlation between differential genes and half-maximal inhibitory concentration. Survival analysis of candidate genes was performed in the TCGA dataset and validated in HCCDB18 and GSE14520 datasets. Immune characteristic analysis identified a key gene, and we found potential candidate drugs using CellMiner. We also evaluated the correlation between the expression of ADH1B and its methylation level. Furthermore, Western blot analysis was performed to validate the expression of ADH1B in normal hepatocytes LO2 and LIHC cell line HepG2.Results: We screened eight potential candidate genes (ASPM, CDK4, PTMA, TAT, ADH1B, ANXA10, OGDHL, and PON1) associated with afatinib. Patients with higher ASPM, CDK4, PTMA, and TAT exhibited poor prognosis, while those with lower ADH1B, ANXA10, OGDHL, and PON1 had unfavorable prognosis. Next, ADH1B was identified as a key gene negatively correlated with the immune score. The expression of ADH1B was distinctly downregulated in tumor tissues of pan-cancer. The expression of ADH1B was negatively correlated with ADH1B methylation. Small-molecule drugs panobinostat, oxaliplatin, ixabepilone, and seliciclib were significantly associated with ADH1B. The protein level of ADH1B was significantly downregulated in HepG2 cells compared with LO2 cells.Conclusion: Our study provides ADH1B as a key afatinib-related gene, which is associated with the immune microenvironment and can be used to predict the prognosis of LIHC. It is also a potential target of candidate drugs, sharing a promising approach to the development of novel drugs for the treatment of LIHC

    Supplemental Material - Mannose-binding lectin gene polymorphism and the susceptibility of sepsis: A meta-analysis

    No full text
    Supplemental Material for Mannose-binding lectin gene polymorphism and the susceptibility of sepsis: A meta-analysis by Shaowen Cheng, Rong Wang, Hengjie Zhu, Jian Yang, Jiangling Yao, Yunfu Zeng, Hongwang Cui and Binwen Huang in European Journal of Inflammation.</p

    SP1-induced upregulation of lncRNA SPRY4-IT1 exerts oncogenic properties by scaffolding EZH2/LSD1/DNMT1 and sponging miR-101-3p in cholangiocarcinoma

    No full text
    Abstract Background Accumulating evidence has indicated that long non-coding RNAs (lncRNAs) behave as a novel class of transcription products during multiple cancer processes. However, the mechanisms responsible for their alteration in cholangiocarcinoma (CCA) are not fully understood. Methods The expression of SPRY4-IT1 in CCA tissues and cell lines was determined by RT-qPCR, and the association between SPRY4-IT1 transcription and clinicopathologic features was analyzed. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to explore whether SP1 could bind to the promoter region of SPRY4-IT1 and activate its transcription. The biological function of SPRY4-IT1 in CCA cells was evaluated both in vitro and in vivo. ChIP, RNA binding protein immunoprecipitation (RIP) and luciferase reporter assays were performed to determine the molecular mechanism of SPRY4-IT1 in cell proliferation, apoptosis and invasion. Results SPRY4-IT1 was abnormally upregulated in CCA tissues and cells, and this upregulation was correlated with tumor stage and tumor node metastasis (TNM) stage in CCA patients. SPRY4-IT1 overexpression was also an unfavorable prognostic factor for patients with CCA. Additionally, SP1 could bind directly to the SPRY4-IT1 promoter region and activate its transcription. Furthermore, SPRY4-IT1 silencing caused tumor suppressive effects via reducing cell proliferation, migration and invasion; inducing cell apoptosis and reversing the epithelial-to-mesenchymal transition (EMT) process in CCA cells. Mechanistically, enhancer of zeste homolog 2 (EZH2) along with the lysine specific demethylase 1 (LSD1) or DNA methyltransferase 1 (DNMT1) were recruited by SPRY4-IT1, which functioned as a scaffold. Importantly, SPRY4-IT1 positively regulated the expression of EZH2 through sponging miR-101-3p. Conclusions Our data illustrate how SPRY4-IT1 plays an oncogenic role in CCA and may offer a potential therapeutic target for treating CCA
    corecore